

EUMETSAT H SAF PRODUCTS APPLICATION IN AGROMETEOROLOGY

H SAF Team

Presenter: Simone Gabellani

16th EUMETSAT User Forum in Africa, Cotonou, September 20th, 2024

HSAF

Satellite Application Facilities in Support to Operational Hydrology and Water Management

PRECIPITATION rate and accumulated

EUMETSAT H-SAF P-IN-SEVIRI

Instantaneous Rain Rate retrieved from IR-MW blending data

SOIL MOISTURE
Surface and root zone

ASCAT soil moisture 20230818_0210, Metop-B, 125

SNOW cover, melting condition, water equivalent

NRT products (EUMETCAST and H SAF ftp)

Data record for soil moisture are available from 1997

https://hsaf.meteoam.it/

EXTREME EVENTS

Case Studies

https://h-saf.eumetsat.int

Case Studies

African drought condition 2023

Severe drought present over parts of central and eastern Africa

Nigeria –October 2022

South Africa (11-13 April 2022)

Liquid root-zone soil wetness index. Saturated soil moisture conditions are present around Durban during the flooding events.

RZSM-ASCAT-NRT-10 (H26)

Metop ASCAT NRT Root Zone Soil Moisture Profile Index 10 km resolution

Analysed liquid soil moisture profile index at 10 km spatial sampling for four different soil layers (covering the root zone from the surface to ~ 3 metres) generated at ECMWF by the dedicated H SAF soil moisture assimilation system at 24 hour time steps.

RZSM-ASCAT-NRT-10 (H26)

SSM derived from change-detection approach (Wagner et al., 1999)

T+0 to T+12 H-TESSEL land **Atmospheric** $\sigma^{b} = 0.01 \text{m}^{3}/\text{m}^{3}$ surface model model $\sigma^{\text{scat}} = 0.025 \,\text{m}^3/\text{m}^3$ background Input External ECMWF **EKF** soil moisture observations 9 km upper air T+0 analysis ASCAT-A/B/C analysis Observation postprocessing **Output root-zone** liquid SWI

- Simplified EKF analysis
- $\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{b}(t_{i}) + \mathbf{K}_{i} \left[\mathbf{y}^{o}(t_{i}) \mathcal{H}_{i}(\mathbf{x}^{b}) \right],$
- $\mathbf{K}_i = \left[\mathbf{B}^{-1} + \mathbf{H}_i^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}_i\right]^{-1} \mathbf{H}_i^{\mathrm{T}} \mathbf{R}^{-1},$
- $\mathbf{H}_{mn,i} = \frac{\mathcal{H}_{m,i}(\mathbf{x}^{b} + \delta \mathbf{x}_{n}^{b}) \mathcal{H}_{m,i}(\mathbf{x}^{b})}{\delta \mathbf{x}}$
- SM analysed over first 3 layers in H-TESSEL:

Layer 1: 0-7 cm

Layer 2: 7-28 cm Layer 3: 28-100 cm

Layer 4 (not analysed): 100-289

cm

- Simplified Extended Kalman (SEKF) filter of de Rosnay et al., 2013
- Stand-alone surface analysis (Fairbairn et al, 2019)
 - Daily (00 UTC) global root-zone liquid soil wetness index at 10 km sampling
 - Operational since 23rd March 2022 with 12-hour latency
 - Near-real-time product (identifier): RZSM-ASCAT-NRT-10km (H26)

RZSM-DR2019-10km (H141)

SSM derived from change-detection approach (Wagner et al., 1999)

de Rosnay et al., 2013

- Daily (00 UTC) global root-zone liquid soil wetness index at 10 km sampling over 1992-2022
- Data record product (identifier): RZSM-DR2019-10km (H141) covers 1992-2022
- Available as demonstrational product on H SAF ftp

DROUGHT MONITORING WITH ROOT-ZONE SM

Comparison of near-real-time
 (NRT) product with data record can indicate droughts or floods

H26 layer 3 (28-100 cm depth) anomaly, 2nd July 2024

 H26 anomaly (%) relative to monthly H141 mean (1992-2021):

$$(SM_i - \overline{SM})*100.0$$

 Extremely dry anomalies over parts of central and western Africa (<-20%)

DROUGHT HAZARD INDEX

- Drought hazard index (DHI) measures the severity of drought conditions
- Drought hazard index based on anomaly divided by standard deviation:

H26 layer 3 (28-100

cm depth) drought

$$\frac{SM_i - \overline{SM}}{\sigma}$$

- Drought conditions (<-1), Severe drought (<-2)
- Severe drought present over parts of central and eastern Africa (02 July 2024)

DROUGHT MONITORING WITH ROOT-ZONE SM

Monthly bulletin for
Water resources in Italy to
support national Civil
Protection (Standardized
Soil Moisture Index based
on RZSM-ASCAT-NRT-10,
H26)

https://hsaf.meteoam.it

Soil moisture forecast

<u>Soil moisture index (H26)</u> from the past three days and ensemble weather forecasts from IFS model (ECMWF) are used to make a soil moisture forecast

P and T forecast, IFS model (ECMWF)

The model is developed for two soil depth layers 7-28 cm and 28-100 cm

Forecast of crop yields

Based on selected parameters and indicators derived from satellite data and the anomalies calculated for them, a model for <u>forecasting the</u> <u>yield of selected crops was created</u>. The model was developed for consecutive months starting with data from January to April, ending with data from January to July

Sample model results for 2023.

Crops	Data from Statistic Poland (dT/ha)	Data from model (dT/ha)
Winter wheat	54,5	50,6
Spring wheat	40,3	39,5
Winter rye	35	33,8
Winter barley	50,1	44,9
Spring barley	37,7	37,4
Oats	30,5	31,9
Winter triticale	45,2	42,7
Spring triticale	33	33,9

The importance of the soil moisture index and the anomalies of this value in the different layers were often more important to the model than, for example, the average daily temperature.

https://hsaf.meteoam.it/

Bulletin

https://agrometeo.imgw.pl/prognoza_wilgotnosci_gleby

Bulletin

Agrometeorological bulletins are prepared monthly, based on measurement data and phenological observations from selected synoptic stations of Institute of Meteorology and Water Management, and based on EUMETSAT H-SAF and Land-SAF satellite products. The maps and charts presented here concern those meteorological elements and agrometeorological indicators that play an important role for crop production.

EUMETSAT satellite products:

Explore the contribution of satellite soil moisture (and satellite precipitatin) in Yield deficiency

P-AC-SM2R-PMW (H64)

Gridded daily precipitation obtained by merging soil moisture-derived rainfall with Passive Microwave (PMW) rainfall estimates,

Main Features:

- Daily temporal resolution;
- 0.25° spatial resolution;
- 1 day latency;

SSM-ASCAT-B-NRT-012.5 (H16)

 Surface Soil Moisture (SSM) products from backscatter observations from the Advanced Scattermeter (ASCAT) onboard the series of Metop satellites

Spatial resolution: 12.5 km

Vertical resolution: Top SM content, 0-2 cm

ASCAT soil moisture 20240919_0210, Metop-B, 125

https://hsaf.meteoam.it/

Disaster Risk Financing & Insurance Program

Including soil moisture significantly improves yield prediction in Morocco, particularly in drought conditions

Barley Morocco

Yield deficiency

YIELD DEFICIENCY AND PEOPLE AFFECTED

Millet

Senegal

Predicted yield Millet

How to download and visualize data

https://h-saf.eumetsat.int

EUMETCAST

EUMETSAT DATA CUBE

H SAF ftp server (last 60 days)

ftphsaf.meteoam.it

Order archived products, instructions on the web site

https://view.eumetsat.int/productviewer?v=default

https://www.mydewetra.world/

H SAF E-LEARNING PLATFORM

It is hosted on the CIMA Foundation moodle platform edu.cimafoundation.org

4 SECTIONS

INTRODUCTION

PRECIPITATION PRODUCTS

SOIL MOISTURE PRODUCTS

SNOW PRODUCTS

Each section includes
CASE STUDIES and
applications

H SAF e-learning Platform

FOR EACH SESSION THERE ARE

- 1 module explaining main products
 (containing 1 video from cluster leader or representative)
- 1 test with exercises on the use of one or more products that requires the student to provide an accurate answer
- 1 certificate of participation that can be unlocked by the participant only if the exercise performed is correct
- 1 dedicated forum where participants can pose questions to experts

Take home message

H SAF Satellite soil moisture and precipitation products are available in near real-time, and long-term

Their use for **yield prediction** (**drought**, **extreme event** monitoring and flood prediction) represent an advance in knowledge and is relevant for real-world operational applications.

silvia.puca@protezionecivile.it

luca.brocca@irpi.cnr.it